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Abstract  

Background:  Mathematical models with system dynamics and interactions are powerful tools for 

analyzing disease outbreaks and supporting real-time decision-making. However, building 

epidemiology models from scratch during an emergency is not efficient and will cause potential 

delays in assessing and mitigating risks.  A general-purpose framework is needed for real-time 

epidemiology modeling and analysis. 

Methods: We propose a general-purpose modeling framework for contact-based and vector-borne 

infectious diseases. The design schema categorizes each stage/compartment based on two different 

criteria: (1) passive or active, and (2) vulnerable, contagious, or unaffected, and establishes 

relationships between stages. Mathematical expressions for the contact-based and the vector-borne 

disease models are derived, each of which features a compact matrix formulation to facilitate 

efficient computation.  
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Results: All classical epidemiology models can be derived using this modeling framework. We 

demonstrate the derivation of the susceptible-exposed-infectious-recovered (SEIR) contact-based 

and SEIR-SID vector-based models; and establish the new Susceptible, Exposed, initial infectious 

Period, Asymptomatically infectious, systematically Infectious, and Recover (SEPAIR), and 

SEPAIHQR models that are suitable for modeling the covid-19 pandemic. The associated basic 

reproduction number of each model is derived using the next-generation matrix concept. The 

modeling framework describes the dynamics of the system with a short and compact formulation 

and can easily be generalized and customized based on the biological properties of different 

infectious diseases. It allows for real-time prediction and analysis. The resulting basic reproduction 

numbers reveal intimate interplay of dwell times of various contagious stages and host-vectors and 

their contribution to  disease spread. These offer a simple yet elegant framework for decision-

makers to objectively and rapidly contrast different interventions and understand their effects in 

disease mitigation and tradeoffs. Conclusion: The proposed modeling framework provides an 

elegant meta-model for epidemiology and enables decision makers to rapidly build, evaluate, and 

implement disease models according to the type of outbreak without diving into the interactions 

among multiple stages and explicitly deriving the ordinary differential equations. This can save 

time and potentially save lives during pandemic emergencies. 

 

Keywords (3-10 keywords): General purpose disease modeling; epidemiology models; contact-

based disease; vector-borne disease; compartmental models; basic reproduction number 
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Introduction 

 

Infectious diseases continue to be one of the major causes of mortality in many countries in the 

21st century. They are the third leading cause of death in the United States  and the leading cause 

worldwide (1). In addition, infectious agents such as bacteria and viruses continue to evolve and 

pose new threats to human beings (2). The 2014 Ebola virus outbreak in West Africa,  the 2016 

Zika virus outbreak in South America and the Caribbean, and the current SARS-CoV-2 virus that 

causes the raging covid-19 global pandemic underscore that combating emerging infectious 

diseases remains one of the most important tasks in public health.  

 

Some of the major factors driving emerging infectious and vec tor-borne diseases include human 

population expansion, increased human travel and migrations, urbanization, climate change, lack 

of vaccines, and the resurgence of the vectors increase the risk of continued global introductions 

and local outbreaks of vector-borne diseases. 

• Building epidemiology models from scratch during an emergency is not efficient and will 

cause potential delays in assessing and mitigating risks. 

• A general-purpose meta-model for infectious diseases will enable decision makers to rapidly 

build, evaluate, implement and customize disease models according to the type of outbreak. 

• The modeling framework presented herein describes the dynamics of a system with a short 

and compact formulation to facilitate computation. 

• All classical epidemiology models can be derived using this modeling framework. 

• This modeling framework enables real-time prediction and analysis 
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Mathematical models have long played an important role in understanding the underlying 

mechanisms of the spread and control of infectious diseases. Utilizing available biological and 

environmental information, and transforming it into knowledge of the disease, these models 

provide strategies and guidelines for mitigation and containment to prevent it  from becoming a 

global pandemic. Mathematical epidemiology models have been studied extensively for many 

years. Coupled with computer simulation, they are powerful tools to provide valuable insights into 

the disease dynamics, understand the transmission characteristics, test hypothesis, assess and 

evaluate containment strategies. Bernoulli (3) formulated the earliest smallpox model in the 18th 

century. In 1906, Hamer developed a discrete time model to understand the recurrence of measles 

in which the number of new infections was assumed to depend on the product of the density of 

susceptible and infectious populations (4). This idea paved the foundation of the subsequent 

compartmental models. In 1911, Ross developed a system of differential equations using a host-

vector structure for the control of malaria (5). Other deterministic models were also developed for 

multiple purposes in the early 20th century (6), specifically Kermack and McKendrick (7-9) 

established the theory of the SIR (susceptible-infectious-recovered) models and other 

corresponding compartmental models in a series of published articles in the 1920s and 1930s. 

 

Many mathematical models and extensions for pandemics were developed based on the framework 

of Kermack-McKendrick model. Li and Zou studied the compartmental model in which the 

infectious disease has a fixed latent period, and formulated the SIR structure for population living 

in two patches (10). Pathak et al. (11) replaced the constant infection rate with an asymptotically 

homogeneous transmission function and derived the stability condition of the model. Xu (12) 
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developed a diffusive Kermack--McKendrick epidemic model with a latent period and determined 

conditions of the existence of traveling waves solutions of the system. Inaba (13) extended the 

compartmental model to recognize individual heterogeneity, and expanded the definition of 

compartments to genetic, psychological, or behavioral characteristics of population. Disraelly et 

al. (14) extended the methodology of Human Response Injury Profile (HRIP) which uses time-

based progression to determine casualty and fatality estimations from infection. Based on the 

compartmental model, they introduced an injury profile sub-model based on severity of the 

symptoms to describe the progression of illness at a detailed granularity. Lee et al. (23) introduced 

asymptomatic infectious within the model to analyze effect infection undercount, and triage errors 

within mass vaccination facilities on intra-facility disease spread.  Daley and Gani (15), Hethcote 

(16), and Breda et al. (17) provided complete reviews of the compartmental epidemiology models 

that emerged based on the work of Kermack and McKendrick. 

 

In this study, we introduce a general-purpose modeling framework for the spread of infectious 

diseases. We first categorize the disease stages according to their roles and properties in the spread 

of infectious diseases; then we define the essential variables for the model based on the 

categorization of stages. Utilizing this framework, we derive the mathematical expression of the 

general-purpose models for contact-based and vector-borne diseases. The resulting modeling 

framework enables derivation of any existing epidemiology models, allows generation and 

investigation of new ones, and we demonstrate its application on three disease models.  

 

Methods and Designs 
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In this section, we introduce and derive the general-purpose framework for modeling  contact-

based diseases and vector-borne diseases. The schema first categorizes the disease stages 

according to their roles and properties in the spread of infectious diseases. Based on these 

categorizations, essential variables are defined. Mathematical expression for the general-purpose 

models for contact-based and vector-borne diseases are then derived.  

 

Categorization of Disease Stages 

The general-purpose modeling framework for infectious diseases is developed based on the 

compartmental models. Compartments, or disease stages, are the statuses that individuals fall into 

during the spread of infectious diseases. We assume that the human population is homogeneous. 

Let 𝛷𝛷 denote the collection of all possible stages. For example, for SIR model, 𝛷𝛷 = {𝑆𝑆, 𝐼𝐼,𝑅𝑅}. Then 

any stage in 𝛷𝛷 can be categorized in two different ways: 

 

• Passive/Active stages. Individuals in a passive stage will not change their statuses 

spontaneously. For example, the susceptible stage is passive, as susceptible individuals 

remain susceptible unless they contact the infectious population and become infected. Let 

𝛷𝛷𝑃𝑃 denote the collection of passive stages. On the contrary, individuals in an active stage 

will change their statuses spontaneously. An example of active stages is infectious 

individuals who will either recover or decease given sufficiently long time. Letting 𝛷𝛷𝐴𝐴 

denote the collection of active stages, a stage will be either passive or active. Therefore, 

𝛷𝛷𝑃𝑃 ∪ 𝛷𝛷𝐴𝐴 = 𝛷𝛷. This method of categorization determines if a mean dwelling time is well-

defined for a stage. 
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• Vulnerable/Contagious/Unaffected stages. Individuals in a vulnerable stage can be infected 

through contacting the infectious ones. Let 𝛷𝛷𝑉𝑉 denote the collection of all vulnerable stages 

where individuals in a contagious stage will have the ability to infect vulnerable entities. 

We use 𝛷𝛷𝐶𝐶 to denote all the contagious stages. The third category is unaffected stages, in 

which individuals are neither vulnerable nor contagious, and they are not in the system of 

infection. We denote them as 𝛷𝛷𝑈𝑈. For example, in the SEIR model, after the initial 

infection, entities will enter the exposed stage. They are not vulnerable, as they have 

already been infected; but they are not infectious yet since the density of viruses or bacteria 

has not reached a level to infect others. Another example of the unaffected stage is the 

recovered stage in an SIR model with immunity assumed.  Every natural stage without 

intervention will fall into one of these categories, thus 𝛷𝛷𝑉𝑉 ∪ 𝛷𝛷𝐶𝐶 ∪ 𝛷𝛷𝑈𝑈 = 𝛷𝛷. 

 

Using this modeling schema, each disease stage can be categorized in two different ways, which 

capture the major characteristics of a disease stage. Figure 1 shows the transition diagram of the 

4-stage susceptible-exposed-infectious-recovered (SEIR) model and the categorization of each 

stage.  

 

Figure 1: Demonstration of stage categorization of the SEIR model. 

Definition of Model Components 

Contact-based diseases are transmitted through physical or indirect contacts between humans. The 

main interest of compartmental models is to understand how human population associated with 
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each disease stage changes with respect to time 𝑡𝑡. Let 𝜙𝜙(𝑡𝑡) denote the number of individuals in 

the system at time 𝑡𝑡, for all 𝜙𝜙 ∈ 𝛷𝛷, and vector 𝒚𝒚 = 〈𝜙𝜙(𝑡𝑡)〉|𝜙𝜙∈𝛷𝛷 represent the number of entities in 

each compartment at time 𝑡𝑡. Similarly, the first-order derivative of the population in each stage in 

terms of time 𝑡𝑡 can be denoted as 𝒚𝒚′ = 〈𝜙𝜙′(𝑡𝑡)〉|𝜙𝜙∈𝛷𝛷. 

 

For each active stage, there is a well-defined average transition. This transition rate represents how 

long an individual will stay in an active stage before transiting to another stage. Therefore, for all 

𝜙𝜙 ∈ 𝛷𝛷𝐴𝐴, let 𝜇𝜇𝜙𝜙 denote the mean transition rate for stage 𝜙𝜙; for 𝜙𝜙 ∈ 𝛷𝛷𝑃𝑃, define 𝜇𝜇𝜙𝜙 = 0 for 

completeness. Let 𝝁𝝁 = 〈𝜇𝜇𝜙𝜙〉|𝜙𝜙∈𝛷𝛷 be the vector form of the mean transition rate for each stage. 

 

To understand the destination of the disease transition, define a disease transition matrix 𝑫𝑫 =

〈𝑑𝑑𝑎𝑎𝑎𝑎〉|𝑎𝑎∈𝛷𝛷,𝑏𝑏∈𝛷𝛷 such that 𝑑𝑑𝑎𝑎𝑎𝑎 represents the disease transition probability from stage b to stage a. 

The column sum of matrix 𝑫𝑫 is either 0 or 1 where the column sum is 0 for absorbing stages, and 

the column sum is 1 for all other stages. (An absorbing state is one that, once entered, cannot be 

left. For example, recovered (assuming immunity) and deceased). Since the transition structure of 

an infectious disease is determined by its own biological property, the disease transition matrix 𝑫𝑫 

can be viewed as a constant parameter. The initial infection is also counted as disease transition. 

 

Let 𝛽𝛽𝜙𝜙 denote the effective baseline infection rate or contact rate adjusted by the total free 

population in the system for all vulnerable stages 𝜙𝜙 ∈ 𝛷𝛷𝑉𝑉. Again, define 𝛽𝛽𝜙𝜙 = 0 for stages 𝜙𝜙 ∈

𝛷𝛷𝐶𝐶 ∪ 𝛷𝛷𝑈𝑈 for completeness. Its vector form is 𝜷𝜷 = 〈𝛽𝛽𝜙𝜙〉|𝜙𝜙∈𝛷𝛷. Unlike the disease transition matrix 

𝑫𝑫, the value of vector 𝜷𝜷 may change with respect to time 𝑡𝑡 due to the change in the distribution of 
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the population. An intuitive example is that people normally do not have contacts with the deceased 

population, thus it needs to be excluded when calculating the population-adjusted contact rate 𝜷𝜷. 

 

In the categorization section, we define the relationship between vulnerable and contagious stages: 

individuals in contagious stages can infect those in vulnerable stages via direct or indirect contacts, 

depending on the biological property of the infectious disease. We now represent this relationship 

using mathematical terms. For simplicity, we define the function 𝑆𝑆(𝜙𝜙):𝛷𝛷 → 2𝛷𝛷 such that 𝑆𝑆(𝜙𝜙) 

finds the set of successor stages of 𝜙𝜙 in the disease transition diagram. Since the transition structure 

can be fully characterized by the disease transition matrix 𝑫𝑫, the function 𝑆𝑆(𝜙𝜙) can be expressed 

equivalently as 

𝑆𝑆(𝜙𝜙) = {𝜓𝜓 ∈ 𝛷𝛷: 𝑑𝑑𝜓𝜓𝜓𝜓 > 0} 

Similarly, we can define the function 𝑃𝑃(𝜙𝜙):𝛷𝛷 → 2𝛷𝛷 such that 𝑃𝑃(𝜙𝜙) finds the set of predecessor 

stages of 𝜙𝜙. Using the definition of matrix 𝑫𝑫, the function 𝑃𝑃(𝜙𝜙):𝛷𝛷 → 2𝛷𝛷 can be expressed as 

𝑃𝑃(𝜙𝜙) = {𝜓𝜓 ∈ 𝛷𝛷: 𝑑𝑑𝜙𝜙𝜙𝜙 > 0} 

With function 𝑆𝑆(𝜙𝜙) properly defined, we can now derive the disease contagious matrix 𝑪𝑪 =

〈𝑐𝑐𝑎𝑎𝑎𝑎〉|𝑎𝑎∈𝛷𝛷,𝑏𝑏∈𝛷𝛷 to represent the relationship between contagious and vulnerable stages. In particular, 

𝑐𝑐𝑎𝑎𝑎𝑎 = −1 if and only if 𝑎𝑎 ∈ 𝛷𝛷𝑉𝑉 and 𝑏𝑏 ∈ 𝛷𝛷𝐶𝐶, and 𝑐𝑐𝑘𝑘𝑘𝑘 = 1 for all 𝑘𝑘 ∈ 𝑆𝑆(𝑎𝑎) if and only if 𝑎𝑎 ∈ 𝛷𝛷𝑉𝑉 

and 𝑏𝑏 ∈ 𝛷𝛷𝐶𝐶. 

 

Table 1 summarizes all the model components introduced and discussed thus far. They will be 

used to establish the general-purpose modeling framework in the following sections. 
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Table 1: Definition of model components in the generic modeling framework 

Symbol Definition 
   P, A Passive/Active stages with no overlap, 𝛷𝛷𝑃𝑃 ∪ 𝛷𝛷𝐴𝐴 = 𝛷𝛷 
   V, C, U Vulnerable/Contagious/Unaffected stages with no overlap, 𝛷𝛷𝑉𝑉 ∪ 𝛷𝛷𝐶𝐶 ∪

𝛷𝛷𝑈𝑈 = 𝛷𝛷. 
𝒚𝒚 = 〈𝜙𝜙(𝑡𝑡)〉|𝜙𝜙∈𝛷𝛷   Number of entities in each compartment at time 𝑡𝑡. 
𝒚𝒚′ = 〈𝜙𝜙′(𝑡𝑡)〉|𝜙𝜙∈𝛷𝛷  The derivative of populations in each stage with respect to time 𝑡𝑡. 
𝝁𝝁 = 〈𝜇𝜇𝜙𝜙〉|𝜙𝜙∈𝛷𝛷       Transition rate of active stages. Define 𝜇𝜇𝜙𝜙 = 0 for all 𝜙𝜙 ∈ 𝛷𝛷𝑃𝑃 for 

completeness. 
𝜷𝜷 = 〈𝛽𝛽𝜙𝜙〉|𝜙𝜙∈𝛷𝛷       Baseline infection rate for vulnerable stages, adjusted by total population. 

Define 𝛽𝛽𝜙𝜙 = 0 for all 𝜙𝜙 ∈ 𝛷𝛷𝐶𝐶 ∪ Φ𝑈𝑈 for completeness. 
𝑪𝑪 = 〈𝑐𝑐𝑎𝑎𝑎𝑎〉|𝑎𝑎∈𝛷𝛷,𝑏𝑏∈𝛷𝛷 Disease contagious matrix: 𝑐𝑐𝑎𝑎𝑎𝑎 = −1 if and only if 𝑎𝑎 ∈ 𝛷𝛷𝑉𝑉 and 𝑏𝑏 ∈ 𝛷𝛷𝐶𝐶, 

and 𝑐𝑐𝑘𝑘𝑘𝑘 = 1 for all 𝑘𝑘 ∈ 𝑆𝑆(𝑎𝑎) if and only if 𝑎𝑎 ∈ 𝛷𝛷𝑉𝑉 and 𝑏𝑏 ∈ 𝛷𝛷𝐶𝐶. 
𝑫𝑫 = 〈𝑑𝑑𝑎𝑎𝑎𝑎〉|𝑎𝑎∈𝛷𝛷,𝑏𝑏∈𝛷𝛷 Disease transition matrix: 𝑑𝑑𝑎𝑎𝑎𝑎 is the transition probability from stage b to 

stage a. 
 

 

 

Modeling Framework for Contact-Based Diseases 

With the model components properly defined in Table 1, we can derive the general-purpose 

modeling framework for the spread of infectious diseases. In particular, we would like to derive 

the expression for 𝒚𝒚′ using these modeling components, which gives us a convenient way to 

compute the population changes in each compartment within a time unit. 

 

The changes in population can be decomposed into two parts: 1) the changes due to natural 

progression of infectious diseases, 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅′ , and 2) the changes due to new infections, 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊′ . To 

determine 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅′ , the change of population in stage 𝜙𝜙 due to the natural development can be written 

as −𝜇𝜇𝜙𝜙𝜙𝜙(𝑡𝑡) and rewritten more compactly in matrix form: 𝒚𝒚𝟏𝟏′ = −𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁)𝒚𝒚. This only considers 

the populations flowing out of the active stages. Since disease transition matrix 𝑫𝑫 captures the 
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transition structure, it can be used to describe the destinations of these populations, i.e., the change 

of population in each stage due to the inflow caused by natural progression of active stage can be 

written as 𝒚𝒚𝟐𝟐′ = 𝑫𝑫𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁)𝒚𝒚. Combining the population changes in 𝒚𝒚𝟏𝟏′  and 𝒚𝒚𝟐𝟐′ , the change of 

populations in each stage due to the natural development of infectious disease can be written as: 

𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅′ = (𝑫𝑫− 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁)𝒚𝒚 

To determine 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊′ , the cause of changes in population is new infections due to direct or indirect 

contacts between vulnerable and contagious individuals. In this case, the generation of new 

infections is determined by the population of both vulnerable and contagious stages. Consider a 

vulnerable individual in stage 𝜙𝜙 ∈ Φ𝑉𝑉 who makes 𝑏𝑏𝜙𝜙 contacts with others on average in a unit 

time. Assume the total free population, i.e., the population that can be reached by this individual 

at time 𝑡𝑡 is 𝑁𝑁(𝑡𝑡). Among these 𝑁𝑁(𝑡𝑡) individuals, 𝐶𝐶(𝑡𝑡) of which are contagious. Therefore, the 

average size of contagious population contacted by the considered individual in a unit time is 

𝑏𝑏𝜙𝜙𝐶𝐶(𝑡𝑡)/𝑁𝑁(𝑡𝑡). Since the total size of population in stage 𝜙𝜙 is 𝜙𝜙(𝑡𝑡), the total new infections 

introduced to the system in a unit time from vulnerable stage 𝜙𝜙 is 𝑏𝑏𝜙𝜙𝜙𝜙(𝑡𝑡)𝐶𝐶(𝑡𝑡)/𝑁𝑁(𝑡𝑡) and the 

baseline infection rate 𝜷𝜷 defined in Table 1 is already adjusted by the total free population 𝑁𝑁(𝑡𝑡), 

the size of new infections from vulnerable stage 𝜙𝜙 can be written as 𝛽𝛽𝜙𝜙𝜙𝜙(𝑡𝑡)𝐶𝐶(𝑡𝑡). 

 

Therefore, for a vulnerable stage 𝜙𝜙 ∈ 𝛷𝛷𝑉𝑉, the change in population due to new infections is 

−𝛽𝛽𝜙𝜙𝜙𝜙(𝑡𝑡)∑ 𝜓𝜓(𝑡𝑡)𝜓𝜓∈𝛷𝛷𝐶𝐶 . The infection structure between vulnerable and contagious stages has 

already been captured by disease contagious matrix 𝑪𝑪, thus, this change of population can be 

rewritten more compactly in matrix form: 𝒚𝒚𝟑𝟑′ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪. Similarly, this equation only 

considers the outflow of population from vulnerable stages due to new infections. To capture the 
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destinations of these outflows, disease transition matrix 𝑫𝑫 is used. The inflow in each stage due to 

new infection is then given as 

𝒚𝒚𝟒𝟒′ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑫𝑫𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪 

 

The expression for 𝒚𝒚𝟒𝟒′  can also be deduced using the expressions for the predecessors and 

successors discussed earlier: for a vulnerable stage 𝑣𝑣 that can be infected by individuals in stage 

𝑢𝑢, 𝑐𝑐𝜓𝜓𝜓𝜓 = 1 for all 𝜓𝜓 ∈ 𝑆𝑆(𝑣𝑣). Then, it is trivial that for each 𝜓𝜓 ∈ 𝑆𝑆(𝑣𝑣), 

𝒆𝒆𝜓𝜓𝑇𝑇 𝑪𝑪𝑪𝑪 = � 𝜔𝜔(𝑡𝑡)
𝜔𝜔∈𝛷𝛷𝐶𝐶

 

where 𝒆𝒆𝜓𝜓 is the standard unit vector with the element corresponding to stage 𝜓𝜓 being 1. On the 

other hand, for each 𝜓𝜓 ∈ 𝑆𝑆(𝑣𝑣),  

𝒆𝒆𝜓𝜓𝑇𝑇𝑫𝑫𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚 = � 𝑑𝑑𝜓𝜓𝜓𝜓𝛽𝛽𝜙𝜙𝜙𝜙(𝑡𝑡)
𝜙𝜙∈𝑃𝑃(𝜓𝜓)∩𝛷𝛷𝑉𝑉

 

Combining the two equations, for a stage 𝜓𝜓 that is a successor of any vulnerable stage, 

𝒆𝒆𝜓𝜓𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑫𝑫𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪 = � 𝑑𝑑𝜓𝜓𝜓𝜓𝛽𝛽𝜙𝜙𝜙𝜙(𝑡𝑡)
𝜙𝜙∈𝑃𝑃(𝜓𝜓)∩𝛷𝛷𝑉𝑉

� 𝜔𝜔(𝑡𝑡)
𝜔𝜔∈𝛷𝛷𝐶𝐶

 

Since the column sum of disease transition matrix 𝑫𝑫 is 1 for any vulnerable stage, adding up this 

value for all stages with predecessors of vulnerable stages, we have 

� 𝒆𝒆𝜓𝜓𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑫𝑫𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪
𝜓𝜓:𝑃𝑃(𝜓𝜓)∩Φ𝑉𝑉≠∅

= � � 𝑑𝑑𝜓𝜓𝜓𝜓𝛽𝛽𝜙𝜙𝜙𝜙(𝑡𝑡)
𝜙𝜙∈𝑃𝑃(𝜓𝜓)∩Φ𝑉𝑉𝜓𝜓:𝑃𝑃(𝜓𝜓)∩Φ𝑉𝑉≠∅

� 𝜔𝜔(𝑡𝑡)
𝜔𝜔∈𝛷𝛷𝐶𝐶

= � 𝛽𝛽𝜙𝜙𝜙𝜙(𝑡𝑡) � 𝜔𝜔(𝑡𝑡)
𝜔𝜔∈𝛷𝛷𝐶𝐶𝜙𝜙∈Φ𝑉𝑉

 

which is the negative of the summation of outflows in vulnerable stages. Therefore, the validity of 

𝒚𝒚4′ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑫𝑫𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪 is justified. 
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Combining the population changes in 𝒚𝒚𝟑𝟑′  and 𝒚𝒚𝟒𝟒′ , the change of population in each stage due to the 

introduction of new infections in the system can be written as: 

𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊′ = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑((𝑫𝑫+ 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪 

 

We have derived the mathematical expressions for 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅′  to model the population change due to 

natural progression of diseases and 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊′  to describe the population change due to new infections. 

Summing up the two, we obtain a compact expression of 𝒚𝒚′. Specifically, our general-purpose 

modeling framework for contact-based diseases in the matrix form is given by: 

𝒚𝒚′ = 𝒚𝒚𝒅𝒅𝒅𝒅𝒅𝒅′ + 𝒚𝒚𝒊𝒊𝒊𝒊𝒊𝒊′ = (𝑫𝑫− 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁)𝒚𝒚 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑((𝑫𝑫 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚)𝑪𝑪𝑪𝑪                 (GModel-CB) 

This equation does not include the natural birth and death of the population. An additional term 

𝜆𝜆(𝒚𝒚) can be added to the earlier equation to describe the change of population in each stage due to 

natural birth and death. 

 

Modeling Framework for Vector-Borne Diseases 

Vector-borne diseases are transmitted by vector bites and do not usually transmit directly between 

humans. Examples of vector-borne diseases include dengue, West Nile, yellow fever, 

chikungunya, and Zika. where numerous compartmental models have been developed. In this 

section, we develop the general-purpose modeling framework for vector-borne infectious diseases. 

 

For simplicity, we assume there are only two groups of populations in the system: humans and 

vectors. Susceptible humans get infected through contact with infectious vectors, and infectious 

humans can infect susceptible vectors through contact as well. We assume an SEIR structure for 
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human population, and an SID structure for vector population, where D stands for deceased. Figure 

2 demonstrates a disease transition diagram for this setting, where subscript H stands for the human 

stages, and subscript V stands for the vector stages. The black solid arrows refer to natural 

progression of diseases, and the red dashed arrows to contact between humans and vectors that 

cause infections. 

 

 

Figure 2: Demonstration of stage transitions for a vector-borne disease model. 

Let 𝛷𝛷𝐻𝐻 denote the collection of all disease stages in the human population and let 𝛷𝛷𝑉𝑉 denote all 

stages in the vector population. Let 𝒚𝒚𝐻𝐻 and 𝒚𝒚𝑉𝑉 denote the size of each stage in the human and 

vector populations respectively. The categorization of disease stages introduced in the previous 

section still works with the separation of human and vector stages. Since the symptoms and 

outcomes of infection is different between humans and vectors, all model parameters need to be 

distinguished by population groups. Let 𝝁𝝁𝐻𝐻 and 𝝁𝝁𝑉𝑉 denote the mean transition rate for active stages 

in human population and vector population respectively, and let 𝜇𝜇𝜙𝜙 = 0 for passive stages in both 

human and vector populations. Similarly, the disease transition matrices for human and vector 

populations are denoted by 𝑫𝑫𝐻𝐻 and 𝑫𝑫𝑉𝑉. 

 

Let 𝜷𝜷𝑉𝑉𝑉𝑉 and 𝜷𝜷𝐻𝐻𝐻𝐻 denote the baseline infection rates for human and vector populations due to the 

inter-species contacts adjusted by the total free human population in the system. Although the 
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contact rate between the two populations should be the same for both human and vector 

populations, the probabilities of getting infected may differ. Consider the scenario in which the 

overall contact rate between the two groups is 𝑏𝑏, and the probabilities of getting infectious from 

these contacts in each disease stage are 𝒑𝒑𝐻𝐻 for human, and 𝒑𝒑𝑉𝑉 for vector respectively, then 𝜷𝜷𝑉𝑉𝑉𝑉 =

𝑏𝑏𝒑𝒑𝐻𝐻 and  𝜷𝜷𝐻𝐻𝐻𝐻 = 𝑏𝑏𝒑𝒑𝑉𝑉. In addition to inter-species contacts, intra-species contacts may also 

introduce new infections to the system, depending on the biological properties of the disease. To 

model this, let 𝜷𝜷𝐻𝐻𝐻𝐻 and 𝜷𝜷𝑉𝑉𝑉𝑉 be the baseline infection rates due to the contacts within the same 

population group. These two parameters have the same meaning as the baseline infection rate 𝜷𝜷 in 

the model for contact-based diseases. 

 

Since the infection structure involves the interaction of two populations, there should be two 

different disease contagious matrices for each direction of the infection as well. Let 𝑪𝑪𝑉𝑉𝑉𝑉 =

〈𝑐𝑐𝑎𝑎𝑎𝑎〉|𝑎𝑎∈𝛷𝛷𝐻𝐻,𝑏𝑏∈𝛷𝛷𝑉𝑉 denote the disease contagious matrix for vectors infecting humans, where 𝑐𝑐𝑖𝑖𝑖𝑖 =

−1 if 𝑖𝑖 ∈ 𝛷𝛷𝑉𝑉
𝐻𝐻, 𝑗𝑗 ∈ 𝛷𝛷𝐶𝐶

𝑉𝑉, and 𝑐𝑐𝑘𝑘𝑘𝑘 = 1 for all 𝑘𝑘 ∈ 𝑆𝑆(𝑖𝑖) if 𝑖𝑖 ∈ 𝛷𝛷𝑉𝑉
𝐻𝐻, 𝑗𝑗 ∈ 𝛷𝛷𝐶𝐶

𝑉𝑉. Similarly, let 𝑪𝑪𝐻𝐻𝐻𝐻 =

〈𝑐𝑐𝑎𝑎𝑎𝑎〉|𝑎𝑎∈𝛷𝛷𝑉𝑉,𝑏𝑏∈𝛷𝛷𝐻𝐻 be the disease contagious matrix for humans infecting vectors, where 𝑐𝑐𝑖𝑖𝑖𝑖 = −1 if 

𝑖𝑖 ∈ 𝛷𝛷𝑉𝑉
𝑉𝑉, 𝑗𝑗 ∈ 𝛷𝛷𝐶𝐶

𝐻𝐻, and 𝑐𝑐𝑘𝑘𝑘𝑘 = 1 for all 𝑘𝑘 ∈ 𝑆𝑆(𝑖𝑖) if 𝑖𝑖 ∈ 𝛷𝛷𝑉𝑉
𝑉𝑉, 𝑗𝑗 ∈ 𝛷𝛷𝐶𝐶

𝐻𝐻. If infections within human or 

vector population group are possible, the intra-group disease contagious matrices 𝑪𝑪𝐻𝐻𝐻𝐻 and 𝑪𝑪𝑉𝑉𝑉𝑉 

can be defined n the same manner as in the model for contact-based diseases. 

 

Similar to the modeling framework for contact-based diseases, the model for vector-borne disease 

can be split into two parts: 1) the population change in stages due to natural disease progression, 

and 2) the population change due to new infections. Since the natural progression of diseases does 
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not involve the interaction between humans and vectors, this part can be written independently for 

human and vector population: 

𝒚𝒚′𝑯𝑯,𝒅𝒅𝒅𝒅𝒅𝒅 = (𝑫𝑫𝐻𝐻 − 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁𝐻𝐻)𝒚𝒚𝐻𝐻,        𝒚𝒚′𝑽𝑽,𝒅𝒅𝒅𝒅𝒅𝒅 = (𝑫𝑫𝑉𝑉 − 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁𝑉𝑉)𝒚𝒚𝑉𝑉 

 

The change in populations due to new infections can be further split into two parts: the intra-

species infections and inter-species infections. The approach to model intra-species infections is 

the same as the model for contact-based diseases, since this change does not involve interactions 

between different species: 

𝒚𝒚′𝑯𝑯,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊−𝒊𝒊𝒊𝒊𝒊𝒊 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝐻𝐻 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝐻𝐻𝐻𝐻)𝒚𝒚𝐻𝐻�𝑪𝑪𝐻𝐻𝐻𝐻𝒚𝒚𝐻𝐻 

𝒚𝒚′𝑽𝑽,𝑖𝑖𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏−𝒊𝒊𝒊𝒊𝒊𝒊 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝑉𝑉 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝑉𝑉𝑉𝑉)𝒚𝒚𝑉𝑉�𝑪𝑪𝑉𝑉𝑉𝑉𝒚𝒚𝑉𝑉 

 

To model the inter-species infections, we assume the total human and vector populations at time 𝑡𝑡 

is 𝑁𝑁𝐻𝐻(𝑡𝑡) and 𝑁𝑁𝑉𝑉(𝑡𝑡), respectively. Consider a vulnerable stage 𝜙𝜙 for the human population. Since 

the baseline contact rate of vectors infecting humans adjusted by the human population in stage 𝜙𝜙 

is 𝛽𝛽𝑉𝑉𝑉𝑉,𝜙𝜙, the number of infectious contacts a human makes with the vector population in a unit 

time is 𝛽𝛽𝑉𝑉𝑉𝑉,𝜙𝜙𝑁𝑁𝑉𝑉(𝑡𝑡). Among the 𝑁𝑁𝑉𝑉(𝑡𝑡) vectors, 𝐶𝐶𝑉𝑉(𝑡𝑡) of them are contagious. Therefore, the 

exposure rate to infections for an individual human in stage 𝜙𝜙 is 𝛽𝛽𝑉𝑉𝑉𝑉,𝜙𝜙𝐶𝐶𝑉𝑉(𝑡𝑡). 

 

Therefore, for a vulnerable stage 𝜙𝜙 in the human population, the change of size due to new 

infection is −𝛽𝛽𝑉𝑉𝑉𝑉,𝜙𝜙𝜙𝜙(𝑡𝑡)∑ 𝜓𝜓(𝑡𝑡)𝜓𝜓∈𝛷𝛷𝐶𝐶
𝑉𝑉 . Rewrite it into a compact form using the disease contagious 

matrix 𝑪𝑪𝑉𝑉𝑉𝑉, the reductions of population in all human stages due to new infections can be written 

as 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝑉𝑉𝑉𝑉)𝒚𝒚𝐻𝐻)𝑪𝑪𝑉𝑉𝑉𝑉𝒚𝒚𝑉𝑉. Again, the destinations of the outflows due to new infections are 

captured in the disease transition matrix for human 𝑫𝑫𝐻𝐻, the inflows for all human stages can be 
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written as 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑫𝑫𝐻𝐻𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝑉𝑉𝑉𝑉)𝒚𝒚𝐻𝐻)𝑪𝑪𝑉𝑉𝑉𝑉𝒚𝒚𝑉𝑉, following the same reasoning as in the contact-based 

disease model. Therefore, the change in population in the human group due to inter-species 

infections is: 

𝒚𝒚′𝑯𝑯,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊−𝒊𝒊𝒊𝒊𝒊𝒊 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝐻𝐻 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝑉𝑉𝑉𝑉)𝒚𝒚𝐻𝐻�𝑪𝑪𝑉𝑉𝑉𝑉𝒚𝒚𝑉𝑉 

 

Similarly, for a vulnerable stage 𝜙𝜙 in the vector population, the baseline contact rate of humans 

infecting vectors in stage 𝜙𝜙 adjusted by the human population is 𝛽𝛽𝐻𝐻𝐻𝐻,𝜙𝜙 per unit time. Assume the 

total contagious human population at time 𝑡𝑡 is 𝐶𝐶𝐻𝐻(𝑡𝑡), thus the exposure rate to infections for 

vectors in stage 𝜙𝜙 is 𝛽𝛽𝐻𝐻𝐻𝐻,𝜙𝜙𝐶𝐶𝐻𝐻(𝑡𝑡). Then for the same vulnerable stage 𝜙𝜙 in the vector population, 

the change of size due to new infection is −𝛽𝛽𝐻𝐻𝐻𝐻,𝜙𝜙𝜙𝜙(𝑡𝑡)∑ 𝜓𝜓(𝑡𝑡)𝜓𝜓∈𝛷𝛷𝐶𝐶
𝐻𝐻 . Using the disease contagious 

matrix of human infecting vectors 𝑪𝑪𝐻𝐻𝐻𝐻, the reductions of populations in all vector stages due to 

new infections is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝐻𝐻𝐻𝐻)𝒚𝒚𝑉𝑉)𝑪𝑪𝐻𝐻𝐻𝐻𝒚𝒚𝐻𝐻. With 𝑫𝑫𝑉𝑉 capturing the information of the 

destinations of the outflows from stages due to new infections, the inflows for all vector stages is 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑫𝑫𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝐻𝐻𝐻𝐻)𝒚𝒚𝑉𝑉)𝑪𝑪𝐻𝐻𝐻𝐻𝒚𝒚𝐻𝐻. Summing up outflows and inflows, the changes in population in 

the vector group due to inter-species infections are: 

𝒚𝒚′𝑽𝑽,𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊−𝒊𝒊𝒊𝒊𝒊𝒊 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝑉𝑉 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝐻𝐻𝐻𝐻)𝒚𝒚𝑉𝑉�𝑪𝑪𝐻𝐻𝐻𝐻𝒚𝒚𝐻𝐻 

 

Adding up the changes in population due to disease progression, intra-species infections and inter-

species infections, the general-purpose modeling framework for vector-borne diseases (GModel-

VB) can be written as: 

𝒚𝒚𝑯𝑯′ = (𝑫𝑫𝐻𝐻 − 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁𝐻𝐻)𝒚𝒚𝐻𝐻 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝐻𝐻 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝐻𝐻𝐻𝐻)𝒚𝒚𝐻𝐻�𝑪𝑪𝐻𝐻𝐻𝐻𝒚𝒚𝐻𝐻

+ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝐻𝐻 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝑉𝑉𝑉𝑉)𝒚𝒚𝐻𝐻�𝑪𝑪𝑉𝑉𝑉𝑉𝒚𝒚𝑉𝑉 
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𝒚𝒚𝑽𝑽′ = (𝑫𝑫𝑉𝑉 − 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁𝑉𝑉)𝒚𝒚𝑉𝑉 + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝑉𝑉 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝑉𝑉𝑉𝑉)𝒚𝒚𝑉𝑉�𝑪𝑪𝑉𝑉𝑉𝑉𝒚𝒚𝑉𝑉

+ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(𝑫𝑫𝑉𝑉 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷𝐻𝐻𝐻𝐻)𝒚𝒚𝑉𝑉�𝑪𝑪𝐻𝐻𝐻𝐻𝒚𝒚𝐻𝐻 

 

This modeling framework for vector-borne diseases can be further expanded to include multiple 

species of vectors by introducing proper model parameters and interaction terms between each 

combination of human and vector species. Additionally, the effect of alternative hosts for vector-

borne diseases other than humans can also be introduced, by adding their own compartments, or 

use their populations to adjust the baseline infection rate. 

 

Basic Reproduction Number 

The basic reproduction number 𝑅𝑅0, defined as the average number of secondary infections caused 

by one infectious individual in a system consists of only susceptible population, is one of the major 

concepts in epidemiology. It measures the transmission potential of a disease, and it also serves as 

a threshold for stability of a disease-free equilibrium of the ODE system (18). If 𝑅𝑅0 < 1, the 

number of new infections introduced to the system will fail to replace themselves, and the outbreak 

containment will begin; if 𝑅𝑅0 > 1, the infectious population will increase and the disease will 

spread. 

 

Castillo-Chavez et al.(19), Van den Driessche and Watmough (20, 21) and Diekmann et al. (22) 

used the approach of next generation matrix at equilibrium to define the basic reproduction number 

𝑅𝑅0. We will also derive the basic reproduction number for our modeling framework using the next 

generation matrix approach. First, we assume that the system has a disease-free equilibrium 𝒚𝒚∞ 

such that 𝜙𝜙(∞) = 0 for all 𝜙𝜙 ∈ 𝛷𝛷𝐴𝐴, i.e., there is no population in active stages, thus no new 
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infections will be introduced to the system spontaneously. Assume a new infectious individual is 

introduced to the system at this equilibrium, and the populations in all passive stages are treated 

as constants, then we may only consider the population changes in active stages. Let 𝒚𝒚𝐴𝐴 denote the 

partial population vector 𝒚𝒚 with only active stages. Let 𝑨𝑨 be a |𝛷𝛷𝐴𝐴| × |𝛷𝛷| matrix such that 𝑎𝑎𝜙𝜙𝜙𝜙 =

1 if and only if 𝜙𝜙 ∈ 𝛷𝛷𝐴𝐴, while all other elements are 0. For any |𝛷𝛷| × |𝛷𝛷| matrix 𝑩𝑩, 𝑨𝑨𝑨𝑨𝑨𝑨𝑇𝑇 gives 

a sub-matrix of 𝑩𝑩 which consists of only rows and columns in 𝛷𝛷𝐴𝐴. Then, following the general-

purpose modeling framework, the population changes in active stages after introducing a new 

infection at equilibrium 𝒚𝒚∞ is expressed as 

𝒚𝒚𝐴𝐴′ = 𝑨𝑨(𝑫𝑫− 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁)𝑨𝑨𝑇𝑇𝒚𝒚𝐴𝐴 + 𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑((𝑫𝑫 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚∞)𝑪𝑪𝑨𝑨𝑇𝑇𝒚𝒚𝐴𝐴 

 

Following the notation in Van den Driessche and Watmough  (20, 21), we denote 

𝑽𝑽 = − 𝑨𝑨(𝑫𝑫− 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝝁𝝁)𝑨𝑨𝑇𝑇 ,     𝑭𝑭 =  𝑨𝑨𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑((𝑫𝑫 + 𝑰𝑰)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜷𝜷)𝒚𝒚∞)𝑪𝑪𝑨𝑨𝑇𝑇 

Then 𝒚𝒚𝐴𝐴′  can now be written as 𝒚𝒚𝐴𝐴′ = (𝑭𝑭 − 𝑽𝑽)𝒚𝒚𝐴𝐴.  

The number of infections produced by the new infectious individual is the product of the expected 

duration of this individual staying infectious and the rate of introducing new infections. The rate 

of introducing new infections is already captured in matrix 𝑭𝑭. To calculate the expected duration 

of staying infectious, consider the following system which only involves disease progression with 

a specified initial value: 

𝒚𝒚𝐴𝐴′ = −𝑽𝑽𝒚𝒚𝐴𝐴,     𝒚𝒚𝐴𝐴(0) = 𝒚𝒚𝟎𝟎 

 

The solution of this system is ℎ(𝑡𝑡,𝒚𝒚𝟎𝟎) = 𝑒𝑒−𝑽𝑽𝑡𝑡𝒚𝒚𝟎𝟎, where each component in this solution can be 

interpreted as the probability that the infectious individual represented by 𝒚𝒚𝟎𝟎 introduced at 𝑡𝑡 = 0 
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is in the corresponding disease stage at time 𝑡𝑡. Therefore, the total number of new infections 

introduced by 𝒚𝒚𝟎𝟎 is 

� 𝑭𝑭ℎ(𝑡𝑡,𝒚𝒚𝟎𝟎)𝑑𝑑𝑑𝑑 = 𝑭𝑭� 𝑒𝑒−𝑽𝑽𝑡𝑡𝑑𝑑𝑑𝑑𝒚𝒚𝟎𝟎 = 𝑭𝑭𝑽𝑽−1
∞

0

∞

0
𝒚𝒚𝟎𝟎 

where the matrix 𝑲𝑲 = 𝑭𝑭𝑽𝑽−1 is the next generation matrix for the system at the disease-free 

equilibrium 𝒚𝒚∞. The (𝜙𝜙,𝜓𝜓) entry of matrix 𝑲𝑲 is the expected number of new infections in stage 

𝜙𝜙 produced by infectious individuals initially in stage 𝜓𝜓. Van den Driessche and Watmough (20, 

21) showed that 𝑲𝑲 has nonnegative eigenvalues, and the basic reproduction number of the system 

𝑅𝑅0 is given by 𝑅𝑅0 = 𝜌𝜌(𝑲𝑲), where 𝜌𝜌(𝑲𝑲) is the spectral radius of matrix 𝑲𝑲, i.e., the maximum of 

the moduli of the eigenvalues of 𝑲𝑲; and the eigenvector 𝝎𝝎 associated with 𝑅𝑅0 is also nonnegative. 

An interpretation of this definition of basic reproduction number is that if the distribution of the 

infectious individual introduced at the equilibrium follows the eigenvector 𝝎𝝎, then the maximal 

number of typical secondary infections produced by the initial infection will be 𝑅𝑅0. 

 

Application of Our Disease Modeling Framework 

By design, our general-purpose disease modeling framework can accommodate different types of 

transmission mechanisms and allows for incorporation of multiple hosts and vectors. All classical 

compartmental disease models can readily be derived using this modeling framework. Moreover, 

it enables derivation and investigation of new disease models. Below, we demonstrate its 

application to two classical compartmental disease models and establish new results for a new 

model.  

 

SEIR Model for Contact-Based Diseases 
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The SEIR model (Figure 1) is widely used in epidemiology. We will show that it can be derived 

readily using our modeling framework. Specifically, we arrange the four stages as {𝑆𝑆,𝐸𝐸, 𝐼𝐼,𝑅𝑅}, then 

the disease transition matrix is 

𝑫𝑫 = �
0
1

0
0

0 0
0 0

0 1 0 0
0 0 1 0

� 

and the disease contagious matrix is 

𝑪𝑪 = �
0
0

0
0

−1 0
1 0

0 0 0 0
0 0 0 0

� 

 

Now assume the baseline infectious rate adjusted by the total human population is 𝛽𝛽, and the mean 

dwelling times at the exposed and infectious stage are 1/𝜇𝜇𝐸𝐸 and 1/𝜇𝜇𝐼𝐼. Then, the vectors 𝜷𝜷 and 𝝁𝝁 

can be written as: 

𝜷𝜷 = [𝛽𝛽, 0, 0, 0]𝑇𝑇 ,𝝁𝝁 = [0, 𝜇𝜇𝐸𝐸 , 𝜇𝜇𝐼𝐼 , 0]𝑇𝑇 

 

Plugging these parameters to our general-purpose modeling framework for contact-based disease 

(GModel-CB) yields the following system of ordinary differential equations: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑆𝑆 = −𝛽𝛽𝛽𝛽𝛽𝛽 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐸𝐸 = 𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜇𝜇𝐸𝐸𝐸𝐸 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼 = 𝜇𝜇𝐸𝐸𝐸𝐸 − 𝜇𝜇𝐼𝐼𝐼𝐼 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑅𝑅 = 𝜇𝜇𝐼𝐼𝐼𝐼 
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To calculate the basic reproduction number of this system, we observe that there is no closed-form 

disease-free equilibrium. Therefore, assume this equilibrium is 𝒚𝒚∞ = {𝑆𝑆∗, 0, 0,𝑅𝑅∗}. Then 

following the definition of next-generation matrix,  

𝑭𝑭 = �0 𝛽𝛽𝑆𝑆∗
0 0 � ,𝑽𝑽 = � 𝜇𝜇𝐸𝐸 0

−𝜇𝜇𝐸𝐸 𝜇𝜇𝐼𝐼
� ,𝑲𝑲 = 𝑭𝑭𝑽𝑽−1 = �𝛽𝛽𝑆𝑆

∗/𝜇𝜇𝐼𝐼 𝛽𝛽𝑆𝑆∗/𝜇𝜇𝐼𝐼
0 0 �, 

 

the basic reproduction number of the system is given by 

𝑅𝑅0 = 𝜌𝜌(𝑲𝑲) = max �0, 𝛽𝛽𝑆𝑆
∗

𝜇𝜇𝐼𝐼
� = 𝛽𝛽𝑆𝑆∗/𝜇𝜇𝐼𝐼          (R0-1) 

 

SEPAIR Model for Contact-Based Diseases 

Lee et al. (23) first proposed a Susceptible, Exposed, initial infectious Period, Asymptomatically 

infectious, symptomatically Infectious, and Recover (SEPAIR) model to describe the propagation 

of contact-based diseases outside and within point-of-dispensing (POD) facilities. The analysis is 

essential since during mass vaccination,  PODs could become hot-spots for disease transmission. 

The SEPAIR model extends the classic SEIR model with two additional disease stages: 

asymptomatically infectious and symptomatically infectious. This 6-stage propagation model 

provides more opportunities to examine the interaction between POD layout design and disease 

propagation. For example, one can gain a better understanding of triage accuracy  on the degree of 

disease spread. Specifically, during triage, providers may fail to identify infectious individuals 

who exhibit no symptoms,  thus leading to increase in intra-facility disease spread during mass 

vaccination events (23). Careful POD layout design to ensure short queues, small crowds and 

social distancing can be carried out to mitigate the effect. The SEPAIR model has proven to be 

critical in analyzing the current covid-19 pandemic since early clinical reports have shown that 

(undetected infected covid-19) individuals without symptoms are shedding SARS-CoV-2 RNA 
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comparably to  symptomatic patients (31, 32). Lee et al. further extended the 6-stage model to 

include also post-recovery infectious (Q) and hospitalization (H) (30, 31). The 8-stage model 

couples hospital resources availability and their effect on the overall disease mitigation.  

 

We will establish new results related to the basic reproduction number for SEPAIR using our 

general-purpose modeling framework. In the SEPAIR model, every individual will enter an initial 

infectious period (P) after exposure (E). Then the individual will either become asymptomatically 

infectious (A) with probability 1 − 𝑝𝑝𝑆𝑆 or symptomatically infectious (I) with probability 𝑝𝑝𝑆𝑆. 

Individuals in stages 𝑃𝑃, 𝐴𝐴, or 𝐼𝐼 are contagious. In the derivation, for brevity, we consider only 

outer-POD disease propagation without vaccination effect and adapt the notations and parameters 

from the original articles(23, 30). 

 

Figure 3: Disease stage transition diagram for a SEPAIR model (23), and its extension to a 8-stage model for covid-19 analysis 
(30). Here, individuals start to be infectious during late stage of incubation, and some recovered individuals may remain infectious 
(German studies). Hence in our disease models, we split these individuals, (Q and R), so that they belong to a unique category. 

To calculate the basic reproduction number, assume that the equilibrium is achieved at 𝒚𝒚∞ =

{𝑆𝑆∗, 0, 0, 0,0,𝑅𝑅∗}, i.e., all active stages will have no population by the end of the outbreak. Then 

following the definition of the next-generation matrix and ordering the stages as   {𝐸𝐸,𝑃𝑃,𝐴𝐴, 𝐼𝐼} in 

the matrix representations, we have 
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𝑭𝑭 = �

0 𝛽𝛽𝑆𝑆∗ 𝛽𝛽𝑆𝑆∗ 𝛽𝛽𝑆𝑆∗
0 0 0 0
0 0 0 0
0 0 0 0

� ,𝑽𝑽 = �

𝜇𝜇𝐸𝐸 0 0 0
−𝜇𝜇𝐸𝐸 𝜇𝜇𝑃𝑃 0 0

0 −(1 − 𝑝𝑝𝑆𝑆)𝜇𝜇𝑃𝑃 𝜇𝜇𝐴𝐴 0
0 −𝑝𝑝𝑆𝑆𝜇𝜇𝑃𝑃 0 𝜇𝜇𝐼𝐼

�, 

𝑲𝑲 = 𝑭𝑭𝑽𝑽−1 =

⎝

⎜
⎛
�

1
𝜇𝜇𝑃𝑃

+
1 − 𝑝𝑝𝑆𝑆
𝜇𝜇𝐴𝐴

+
𝑝𝑝𝑆𝑆
𝜇𝜇𝐼𝐼
�𝛽𝛽𝑆𝑆∗ �

1
𝜇𝜇𝑃𝑃

+
1 − 𝑝𝑝𝑆𝑆
𝜇𝜇𝐴𝐴

+
𝑝𝑝𝑆𝑆
𝜇𝜇𝐼𝐼
�𝛽𝛽𝑆𝑆∗

𝛽𝛽𝑆𝑆∗

𝜇𝜇𝐴𝐴
𝛽𝛽𝑆𝑆∗

𝜇𝜇𝐼𝐼
0 0 0 0
0 0 0 0
0 0 0 0 ⎠

⎟
⎞

 

The basic reproduction number of the SEPAIR system is given by 

𝑅𝑅0 = 𝜌𝜌(𝑲𝑲) = max �0,0,0, � 1
𝜇𝜇𝑃𝑃

+ 1−𝑝𝑝𝑆𝑆
𝜇𝜇𝐴𝐴

+ 𝑝𝑝𝑆𝑆
𝜇𝜇𝐼𝐼
� 𝛽𝛽𝑆𝑆∗� = � 1

𝜇𝜇𝑃𝑃
+ 1−𝑝𝑝𝑆𝑆

𝜇𝜇𝐴𝐴
+ 𝑝𝑝𝑆𝑆

𝜇𝜇𝐼𝐼
� 𝛽𝛽𝑆𝑆∗         (R0-2) 

Using the same approach, we can deduce the basic reproduction number for the 8-stage 

SEPAIHQR system as 𝑅𝑅0 = � 1
𝜇𝜇𝑃𝑃

+ 1−𝑝𝑝𝑆𝑆
𝜇𝜇𝐴𝐴

+ 𝑝𝑝𝑆𝑆
𝜇𝜇𝐼𝐼

+ (1−𝑝𝑝𝑆𝑆 ) 𝑝𝑝𝐴𝐴𝐴𝐴+ 𝑝𝑝𝑆𝑆 𝑝𝑝𝐼𝐼𝐼𝐼
𝜇𝜇𝑄𝑄

�𝛽𝛽𝑆𝑆∗ where  𝑝𝑝𝐴𝐴𝐴𝐴, and  𝑝𝑝𝐼𝐼𝐼𝐼 

corresponds to the probability of (a)symptomatic patient recovers but remains infectious. The 

results demonstrate clear interplay of the dwell times of contagious stages and their effect and 

extent of contribution to disease spread.  

 

SEIR-SID Model for Vector-Borne Diseases 

The SEIR-SID model shown in Figure 2 is the most basic model setup for vector-borne diseases. 

It can easily be derived with our general-purpose modeling framework for vector-borne disease. 

We first arrange the human and vector compartments as {𝑆𝑆𝐻𝐻,𝐸𝐸𝐻𝐻, 𝐼𝐼𝐻𝐻 ,𝑅𝑅𝐻𝐻} and {𝑆𝑆𝑉𝑉, 𝐼𝐼𝑉𝑉 ,𝐷𝐷𝑉𝑉}. Based 

on the disease transition diagram, the disease transition matrices for this model are 

𝑫𝑫𝐻𝐻 = �
0
1

0
0

0 0
0 0

0 1 0 0
0 0 1 0

� ,𝑫𝑫𝑉𝑉 = �
0
1

0 0
0 0

0 1 0
� 

and the disease contagious matrices are 
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𝑪𝑪𝑉𝑉𝑉𝑉 = �
0
0
0
0

−1
1
0
0

0
0
0
0
� ,𝑪𝑪𝐻𝐻𝑉𝑉 = �

0 0 −1 0
0 0 1 0
0 0 0 0

� 

Assume the infectious contact rate between human and vector population is 𝛽𝛽, the mean dwelling 

time at the exposed and infectious stage is 1/𝜇𝜇𝐸𝐸 and 1/𝜇𝜇𝐼𝐼 for humans, and the mean dwelling time 

at infectious stage is 1/𝜇𝜇𝑉𝑉 for vectors. Then the vectors 𝜷𝜷𝑉𝑉𝑉𝑉,𝜷𝜷𝐻𝐻𝐻𝐻 ,𝝁𝝁𝐻𝐻,𝝁𝝁𝑉𝑉 can be written as 

 

𝜷𝜷𝑉𝑉𝑉𝑉 = [𝛽𝛽, 0,0,0]𝑇𝑇 ,𝜷𝜷𝐻𝐻𝐻𝐻 = [𝛽𝛽, 0,0]𝑇𝑇 ,𝝁𝝁𝐻𝐻 = [0, 𝜇𝜇𝐸𝐸 , 𝜇𝜇𝐼𝐼 , 0]𝑇𝑇 ,𝝁𝝁𝑉𝑉 = [0, 𝜇𝜇𝑉𝑉 , 0]𝑇𝑇 

 

For brevity, we omit the intra-group infections. Plugging these parameters to the general-purpose 

modeling framework for vector-borne disease (GModel-VB) yields the following system of 

ordinary differential equations: 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑆𝑆𝐻𝐻 = −𝛽𝛽𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐸𝐸𝐻𝐻 = 𝛽𝛽𝑆𝑆𝐻𝐻𝐼𝐼𝑉𝑉 − 𝜇𝜇𝐸𝐸𝐸𝐸𝐻𝐻 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼𝐻𝐻 = 𝜇𝜇𝐸𝐸𝐸𝐸𝐻𝐻 − 𝜇𝜇𝐼𝐼𝐼𝐼𝐻𝐻 

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑅𝑅𝐻𝐻 = 𝜇𝜇𝐼𝐼𝐼𝐼𝐻𝐻 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝑆𝑆𝑉𝑉 = −𝛽𝛽𝑆𝑆𝑉𝑉𝐼𝐼𝐻𝐻 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐼𝐼𝑉𝑉 = 𝛽𝛽𝑆𝑆𝑉𝑉𝐼𝐼𝐻𝐻 − 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉 

𝑑𝑑
𝑑𝑑𝑑𝑑
𝐷𝐷𝑉𝑉 = 𝜇𝜇𝑉𝑉𝐼𝐼𝑉𝑉 
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 This system of ordinary differential equations does not have a closed-form solution for disease-

free equilibrium. To calculate the basic reproduction number, assume that the disease-free 

equilibrium is achieved at 𝒚𝒚∞,𝐻𝐻 = {𝑆𝑆𝐻𝐻∗ , 0,0,𝑅𝑅𝐻𝐻∗ },𝒚𝒚∞,𝑉𝑉 = {𝑆𝑆𝑉𝑉∗ , 0,𝐷𝐷𝑉𝑉∗}. Then following the definition 

of next-generation matrix,  

𝑭𝑭 = �
0 0 𝛽𝛽𝑆𝑆𝐻𝐻∗
0 0 0
0 𝛽𝛽𝑆𝑆𝑉𝑉∗ 0

� ,𝑽𝑽 = �
𝜇𝜇𝐸𝐸 0 0
−𝜇𝜇𝐸𝐸 𝜇𝜇𝐼𝐼 0

0 0 𝜇𝜇𝑉𝑉
� ,𝑲𝑲 = 𝑭𝑭𝑽𝑽−1 = �

0 0 𝛽𝛽𝑆𝑆𝐻𝐻∗ /𝜇𝜇𝑉𝑉
0 0 0

𝛽𝛽𝑆𝑆𝑉𝑉∗/𝜇𝜇𝐼𝐼 𝛽𝛽𝑆𝑆𝑉𝑉∗/𝜇𝜇𝐼𝐼 0
�,  

 

the basic reproduction number of the system is given by 

𝑅𝑅0 = 𝜌𝜌(𝑲𝑲) = �𝑆𝑆𝐻𝐻
∗ 𝑆𝑆𝑉𝑉

∗

𝜇𝜇𝐼𝐼𝜇𝜇𝑉𝑉
𝛽𝛽        (R0-3) 

 

Discussion 

 

In this study, we proposed a general-purpose modeling framework for analyzing the spread of 

infectious diseases. This modeling framework extends the traditional compartmental models by 

categorizing each stage or compartment based on two different criteria: (1) passive or active, and 

(2) vulnerable, contagious, or unaffected, and establishing relationships between stages based on 

their categorization. Using this framework, we derived the mathematical expression for the 

contact-based and vector-borne disease models. The modeling technique for vector-borne diseases 

can depict the system dynamics of multiple species (> 2, for both the hosts and the vectors), given 

the well-defined inter-group disease contagious matrices. We derived the basic reproduction 

number of the system using the next-generation matrix approach and demonstrated applications of 

the modeling framework on the SEIR and SEPAIR models for contact-based diseases and the 

SEIR-SID model for vector-borne diseases.  
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We illustrated how to derive new results on the basic reproduction number for the SEPAIR and 

SEPAIHQR model using the general-purpose framework. The result,  𝑅𝑅0 = � 1
𝜇𝜇𝑃𝑃

+ 1−𝑝𝑝𝑆𝑆
𝜇𝜇𝐴𝐴

+

𝑝𝑝𝑆𝑆
𝜇𝜇𝐼𝐼
� 𝛽𝛽𝑆𝑆∗, reveals significant contribution of asymptomatic individuals towards the disease spread. 

For the current covid-19 pandemic, the result offers justification the necessity of early adoption of 

strategic diagnostic testing (sampling to include no-symptom individuals)  for case discovery and 

biosurveillance, universal facemasks to reduce transmission, and contact-trace and self-quarantine 

for both symptomatic and asymptomatic patients.  In a model developed in February 2020 (30), 

Lee et al. use 𝑝𝑝𝑆𝑆= 2/3 for symptomatic cases for non-pharmaceutical intervention analysis.. Recent 

clinical analysis puts 𝑝𝑝𝑆𝑆  in the range of  38% 𝑡𝑡𝑡𝑡 63.7% (33,34,35). 

 

From the basic reproduction number equations R0-1 to R0=3, we can observe the intimate 

interplay of dwell times of various contagious stages and host-vectors and their contribution to  

disease spread. These offer a simple yet elegant framework for decision-makers to objectively and 

rapidly contrast different interventions and understand their effects in disease mitigation and 

tradeoffs.  

 

Using this proposed modeling framework, all classical epidemiology models can be derived. It 

also allows for derivation and investigation of new disease models. This modeling framework 

describes the dynamics of the disease transmission system with a short and compact formulation 

and can easily be generalized and customized based on the biological properties of different 

infectious diseases.  
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Infectious diseases remain a major threat to public health. In addition to common infectious 

diseases, new and re-emerging diseases continually challenge us. The devastation of covid-19 

underscores the necessity of multi-level and timely interventions. Accurate prediction and 

immediate response upon outbreaks are of paramount importance for early containment and 

mitigation. Mathematical models with system dynamics and interactions are powerful tools for 

analyzing the trend of disease outbreaks and supporting real-time decision-making. However, 

building epidemiology models from scratch during the emergency is not efficient and will cause 

potential delays in assessing and mitigating risks. The proposed modeling framework provides an 

elegant meta-model for epidemiology and enables epidemiologists and emergency public health 

responders to rapidly build, evaluate, and implement disease models according to the type of 

outbreak without diving into the interactions among multiple stages and explicitly deriving the 

ordinary differential equations. This can save time and  lives during public health emergencies. 

 

With the availability of modern computing technologies, the idea of “digital surveillance” using 

automated and computerized methods to track and predict the spread of infectious diseases is 

becoming increasingly important (24, 25). Our proposed modeling framework provides a practical 

backend engine for such a digital disease surveillance system since it is highly general-purpose 

and can be adapted to fit different types of computations. Furthermore, the matrix formulation is 

computationally advantageous since most programming languages have libraries with fast matrix 

and vector multiplication algorithms implemented. We have developed RealOpt-ASSURE, a 

digital disease surveillance, response, and decision-making system (26). It connects the modeling 

framework with a graphical user interface and allows users to design a disease transition diagram 

and input model parameters that fit the needs of an unfolding outbreak; and translates the input 
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automatically on the backend into a system of ordinary differential equations. Public health users 

can model, solve, and interpret the results without having to manipulate the complex mathematical 

equations.  

 

Medical interventions can be introduced into the modeling framework implicitly or explicitly. 

When the process of medical interventions is treated as a black box, we can create new stages to 

the intervention process by assigning proper values in all model matrices. For example, 

hospitalization can be treated as a new stage in the SEIR model with its own transition rates (23, 

30). Another solution is to model the interventions in detail by segmenting the population into 

different groups. For example, to model the effect of vaccination, we can separate the population 

into two groups: outside and inside vaccine clinics. For the population outside the vaccine clinics, 

the previous disease propagation model will be used; for the population inside the vaccine clinics, 

in addition to the natural propagation of the disease, the vaccination effect will also drive the 

transition between disease stages. This modeling method is suitable for studying the effect of 

operations at healthcare facilities or PODs during emergency disease outbreaks and identifying the 

optimal operation strategies. We have discussed this concept in mass dispensing (23, 27) and in 

vaccine prioritization analysis (28).  

 

Optimization problems can also be formulated based on the modeling framework to determine the 

optimal allocation of medical resources or to compare the effects of different containment 

strategies. Instead of treating all model matrices as constants, they can be modeled as time-variant 

variables whose values are controllable through human interventions at a certain cost. Then 

optimization problems can be formulated and solved to achieve containment under various 
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constraints, and assist on-the-ground operations for disaster relief effort. We have successfully 

applied this type of optimization problem on containing the 2014 Ebola virus outbreaks in West 

Africa by determining the minimum number of beds required to reach containment (26), and 

evaluating different intervention strategies to contain the 2016-2017 Zika virus outbreak in Brazil 

and Puerto Rico (29).  

 

As in any compartmental models, estimating model parameters are essential for this general-

purpose modeling framework. The flexibility of the model enables one to incorporate a large 

number of parameters to describe the system dynamics in detail. Some of these parameters can be 

obtained through the biological properties of the diseases, others will require estimation. With high 

degree of freedom, improper estimations of model parameters may result in over-fitting. In 

practice, users should start with simple yet robust settings of the model and adjust and enhance as 

more data become available and a better understanding of the outbreak is obtained. Our previous 

research shows that simple models have sufficient predicting accuracy in many cases and should 

be preferred when accurate parameter estimations are not immediately available (26, 29). 

Sensitivity analysis is also useful to determine the relevant importance of different model 

parameters (24). 

 

The spread of infectious diseases has intrinsic stochasticity due to the difference among 

individuals, the randomness in the behavior of individuals, and the heterogeneity among different 

population groups. Using Langevin dynamics, stochasticity can be introduced into our modeling 

framework. In this case, a stochastic term can be added to each differential equation in the model 
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and a confidence interval of the projected trend can be obtained. This can also be easily 

implemented computationally at the expense of generating random noises during each evaluation. 
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